[
]
Project info 1
Experiment Date20201028
Experiment ID
Notebook ID
Project
Experimenter
Protocol
[
]
NHE6serum fgf cterm
Step by step instructions for performing oneway ANOVA
How the data are organized
The columns define three treatments. Note that, unlike many statistics programs, Prism does not define groups by using a grouping variable. Instead, the groups are defined by the columns. Note that one value is missing. This is fine for ordinary oneway ANOVA (but not for repeated measures).
The goals
 To determine if the differences between the group means
are greater than you'd expect to see by chance.

To determine the 95% confidence interval for the difference
between the pairs of group means (post tests).
How to perform oneway ANOVA
Click Analyze, choose oneway ANOVA from the list of column analyses, and then accept all the default choices
on the dialog. Click the link below for detailed instructions, and to learn about one way ANOVA.
WT
145.6522
132.1739
112.6087
200.8696
234.3478
162.1739
231.7391
270
NHE6 KO
175.2174
106.5217
129.1304
207.8261
251.3043
190
216.5217
190
eNrs3QdgE1UDB/B3l9WEbkAoMk6UKZS2bARJ2ZVhQVRARdI2pZG2qW2YgkQZ4oKqiCwVEQVl
iBtFpOIAFRUBEQQVFVmioqL4qcD33o3c/dM0NoAg+B5ck9/du3fv9rt7dy+ZXXv06DkgvZXg
jyaElAqlgkj/5pBB4mMkj/YZJBIIk03Kp0C7tRcTItLhOcRNKhu6kl4h+4v+zEaEmKOUlIfT
zkK7IwLGOkGDNnVR/SSGz8pOjQceeOCBBx54+PcGgS8CHnjggQceeOCBBx544IEHHnjggQce
eOCBBx544IEHHnjggQceeCAm0oX+PVSVkA1JhAwwEdLHHMn47HG7DUQgFqUm3kzmV3LE+Wdp
hq1+9lighdjkGVdCerHHlR9mnEtoF2twqfLUgUkU6qvpKD2ucRfnuApdFabTiHbxYdMR5e6q
sQVZ3jAZYulUDZlOopqOSU7nWk/h8BzalYSZr9oh0xHVdJRtYaCnwF0i9XOPlgZ4C1yF5dK5
mHYxFeTH6pwgp5JCJ3Sr/I09FDqTROkb0AlFAkgEmUBmVXfL3/y0e5BstenpnXxuMfCHQ3ng
gQceeODhzAd2Yp5HtPLoO2SUqJQEeODhzAbR2d6vvOdkJ43p36sLi1yeYneO5JN87hKf5M2V
+vXq3qbEXTyyQModnitlN/e5iwuIgzQT8LJKfkFJ9PNFagjNAk9x+0kH+QopgZyQ9/8/1SW2
ijQLXI1gSFC74HBZ4JqChY7y+A7DVcbfhShpPI1ZN4IxTnfoRGrJ10HH6Pfjaqd9Z2GBfHUi
qp0x1vEQqR2roL8WDhJtfrUjr6hed5mJ8qqdlXbsIitK3guUpVmFdtHq9RS7Qo5Tr3DZGklU
r1Kr0a467S6gXQ3a1aRdEu3Y3F2oXoHWoV1nIgWuXNU1Z64W2GfMaj+nnP5AV9bIfFexVOwu
GZnvKzGMGwhR+prT3lB0KqmGjixGEtkUSWRzJJEtkUS2RhLZFknkqEgi20NHdkihIjuCIleR
wkSuEknk6Egix0QSOTaSyHGRRI6PJHJCJJETI4lcNZLI1SKJXD2SyBdEErlGJJFrRhI5KZLI
tSKJfGEkkWtHErlO6Mg9SC96RLHSCFIsL2jwwMP5dHEc6mL4ZIubN9Jyyo1yMa8ysX+c+G/9
1JbJjWrR9UbVallp4sl2LI2tckqz1EvBh8gcNe3coGW/iZa1Ntn0dcK+dmDF1jxPieQtLspz
FdJrR1ehK39sCe0z2lUilbhG0V4jSzyFw6XMYk9JgdQ2OaVVsjTQK+V6xki+PLdUVOzNyncX
SDnF3iK5R1eaznC3VOAuHNlMys7zekvcUrdApmb7lSIA21BmGzaVZlRnJisun0tKZymPkyeR
w2IWakNH53my8ySfi6Yj+bxKDsa5k5vLhS1BvXJzkD10Hc52viJfML/iPCAXmNjiX0BPa03p
TJWxFeKcE7g2fFIungj6iTFQY7SYTAjaZdj1ECtTZUqjXPkj3VJj5Wq+ySnumZ4xte745Iuf
h+ztfEK+6CIJE9QhehaEoCz4pGKXz+M9XQcHz5h76u1Yndhnh5oFIUQWxKAsDJBKbh7pKnbn
nK4sjO9fL/aGuVPVLIghsmAKykI3T26uu9hdmO2Wsty+0W66tRS4XYUlJ52F+Jv6/jL98cuc
ShZMIbJgDspCH+9od7GU7S3M9eTIGcn3FHh8p7AUfs4oWuN6cGiZkgVziCxYgrJwdVHR6c3C
hIl3z5vZMlddCpYQWbAGZaHH6d4c19fOSnTZ66tZsIbIgq2inbLHadopSdf9E2+dM0ndHG2B
LDwVuLekNR6k3VdiWTCebklEY4gRj2GKeAyeK54rniueK54rniueK54rniueq/9KrtqrdfLC
aamTN4t+3phYiDp5M9TJC/9Inbwp4jr5yo7B6+R5nTyvk+d18rxOntfJ8zp5HnjggdfJn7d1
8oJaJy+odfICr5M/l+rkhbNfJy+c/Tp54ezXyQtnv05eOPt18sLZr5MXzn6dvMDr5PndWZ4r
niueK54rniueK54rniueK56r0HXyUYH35FktQyUr4OV6RREn818ObDHoFfCsyi1FXS8OtXJX
qzZPV7vx8uoipD/v/pWdU62I7x9ibbObYY3VVS09ZgvcNmP9NwhRJEm0h+xn3MmFoJ2UbS7T
ySC1r6BuR2Z1y+lP9IcU2LW9I8ThIrBfqmnEGcYR5a2wpiFWf3X7YzGdE1lVbs2g++JOn1Lj
x6anDBUMnXMkIePUoXH+jiHun7NPt2F+ogg26GCMb5f3jWsHkvjAmw2E/BK4TxlP9Hb4ZpBM
otfDa4kTw724UAuFTXhPmIYSS9Wx45zKzBh/hjjymYlSj6RS7ytPaY6qnPIciXSO7lTPEfr9
3Sj1qM+exGpHKv0kVofgJ0aUE8N+k9IRw7bMTwzlTwwk5IkhWj0xDBKUjh98/91daQQnBpuh
BHZCTCCZpsSQ/YJPDGLQoVg5MbC+G9QjhU3dcoyVlX93YogynBiM1ZDlTwz9Q54YtIoG50R9
usrRUgxRrZqrnopEtUd00LwlqZ1dyWs8SRO03trodGFnBCfLJicJzgxBjVtm2t1L658pOsvF
L6DdNGG2HL8ry7w5U/5+C+svLpG/2+if2cIlV7DvH7G0RLP8vbW8x6aUS/NV2m23HJbHXcZW
inV34PsSm/KdxZkWpcR5nnZj7PsD34c59pdL8w3a9aryuxyH1bY6o6cF8lyapOc5JUbP8yHr
JVf8Qjaqjayx00ltdakEbwLaiSIxxGYRfBIJHi/RsKkFD6tL9PcAg4c1MIwXyfRSid5YbvCw
bkRvCjZ4GNtoq1cwjG1NTSoYNoN+XlTBsJXqSTjSeVhN8DFQ47AdRHnQKNSw38IMqypUnGaq
UPF4/QzDIpmHEbRHvQqG3SXoDwwHD5snVLyOlggVr6M1grKOEsh++m2PID+gmu8OVH6TWEHo
6s0fWVAodSFRgjCqJJmYAr3SWa+gcgyJEwRJUuvAiN0AqWRkQYGreCxJYD2v8gwv9OR6sl2F
vvyxUo5af+qTGmdKHaWU5JTWTTqTBizilYXu5pK3WPKN9jb3uTz5dEpqgp1JHRbB10zKyaX7
ptDLO1rK8gyXPCVyzX5OoE62M6nFIvZ1uwqlZ6Wruvdlha1sbR5qVjisizKswspdOdX2rRsY
qzw9hbTURrNHktjAQNW01Njtc2lowgYqtYPsCYJsb0ER7U1nqtjjommUkAvZuD2aSd16FNI/
uTkk5rQu1E/42v4Pre2E+IN0Te/9D6ztdeVXd1LFA7soA8+79a1f2oqGi+c9Al6wB4foSl3a
EnI/yQuUdxLVv9H0HGmjZQ+l5JFKSxLd6NmoPz3r5NKzywx6pl+pntFX05g7aInpV9olCHVJ
C6EO6SMoZ0qPUI+WGhPIHCGGPClUJ6uFJuQlYjacvbRpikQvIZmIXiJi2ddKQFail2rYMK0U
E0X0Uoud6KUUB9FLJSyvWikkhuglC/aA1w61xMcK9L+q3+UXR9SSAjtDt1DP/iyPfdTv1eQ5
VM7u1eXysRKXPTk+Rz17swfDn1Tnl10ArFbPzmzb1W6SmAx3nIzFfu3BqCgScbH/ITnShnLF
Y5Z9yVTWSyv271aL/ax/mbmsV7gHPJNZHFHKCMS3lgXG9duU71ew9M3DMrRZ8It46RGc5u0s
76aVGdr3MvU7K7oXmZWiO7v0+N2sXHqwSwkp6FIiOE22KWyqUpQRyHO0Ic+19Hn3X7i7V2TF
/qSTKP4lEb2VkeBh9cIU+xsaxgs3vUjyor13FmpYmzD57BhmWBei/0ZI8LDMSl4qRTIPWepO
FWrY2DDDSg15CR62MMyl0ouVvHSJZB7K1INNqGEfhVlHO8Kshy/VbSmB7KN/v1HvnBblu0oK
XMZKqOqC0PtKIgbKBtcOZEhJbtO+XRtiFQR6lqTu52V/BwbO4cQhCL5OKckt27duSU/fnVJb
saJGy7Ytk9NooatNm+SWrZpJhZ3akURBaJWSktyO9k1LS05pH+ib1ja5TSsWt31y+zR2emye
SiO0ZKfT1LZ0GCuI0BNeampKK1Y4aE+/tmsmtaX/SRV5SEp7OX9Nm7KcDabnXBMr9f6HZpYW
+uiM7j2DM7sO5raqNrfrYHararO7Tpvf2NMzv6ELPd+Q01/o0f5a6RHZRo+8+nG3Gd0Xac7o
EdBKj3SxNEf68SyLnujH0G463ecepceP5wzHiTV0/95Ix91Gx9tF03yJ7A46Fiap86CdH9g5
qJ6h0KMd/21EP26zgoB2nLYT/bjMhmnHYZYH7bgbS5Tj5QXq8WaM+j1evheqv6/8qHr8Y+M8
p6ZRXZ4LZTw2zkZ1Ouz4uk2dLivQ7FLzyNZduDoSkeaYFcQyi703ubN9tNidSzcOKd+j1JPQ
AnmJj5aCK6oMWSTySpBQlSGLwlaGbFe7TN79qzutljyjEpUhxirBdPnqRQjZL7gyJHBMnCga
KkO0w6peiYFBqwyJrkQtuTHsk/Odp86fIg/oJtAIUD6oAFQI8oKKQDeDikElIB9oJGgUaDRo
DGgsaBzoFtB40ATQraCJID/oNtDtoEmgyaApoKmgO0DTQHeC7gLdDboHdC9oOmgGqBR0H+h+
0AOgmaAHQbNAD4Fmg+aA5oLmgeaDHgY9AnoUtAD0GGgh6HHQItAToCdBi0FLQE+BngYtBS0D
LQetAD0DWgl6FvQc6HnQC6AXQS+BXgatAr0CehW0GvQaaA3oddBaUBnoDdA60Jugt0Bvg94B
rQdtAL0Leg/0Pmgj6APQh6CPQJtAH4M2g7aAtoI+AW0DfQraDtoB+gy0E7QL9DnoC9CXoN2g
r0Bfg74B7QF9C9oL2gfaDzoAOgj6DnQI9D3oB9CPoMOgn0A/g34BHQH9CvoNdBT0O+h/oD9A
f4L+Ah0DHQedALEiiC4BJIJMIDPIArKCbKAokB3kAFUBRYNiQLGgOFA8KAGUCKoKqgaqDroA
VANUE5QEqgW6EFQbVAdUF1QPJIEuAtUHXQy6BNQA1BDUCNQY1ATUFHQpqBmoOSgZ1AKUAkoF
pYFaglqBWoPagNqC2oHagzqALgN1BHUCXQ7qDHKC0kFdQF1B3UDdQT1APUG9QBmgK0C9QX1A
fUH9QFeCMkH9QQNAV4EGgq4GXQO6FjQINBg0BHQd6HrQDaChoBtBw0AuUBYoG5QDcoNyQcNB
eSAP6CbQCFA+qABUCPKCikA3g4pBJSAfaCRoFGg0aAxoLGgc6BbQeNAE0K2giSA/6DbQ7aBJ
oMmgKaCpoDtA00B3gu4C3Q26B3QvaDpoBqgUdB/oftADoJmgB0GzQA+BZoPmgOaC5oHmgx4G
PQJ6FLQA9BhoIehx0CLQE6AnQYtBS0BPgZ4GLQUtAy0HrQA9A1oJehb0HOh50AugF0EvgV4G
rQK9AnoVtBr0GmgN6HXQWlAZ6A3QOtCboLdAb4PeAa0HbQC9C3oP9D5oI+gD0Iegj0CbQB+D
NoO2gLaCPgFtA30K2g7aAfoMtBO0C/Q56AvQl6DdoK9AX4O+Ae0BfQvaC9oH2g86ADoI+g50
CPQ96AfQj6DDoJ9AP4N+AR0B/Qr6DXQU9Dvof6A/QH+C/gIdAx0HnQCx2iXD9R9IBJlAZpAF
ZAXZQFEgO8gBqgKKBsWAYkFxoHhQAigRVBVUDVQddAGoBqgmKAlUC3QhqDaoDqguqB5IAl0E
qg+6GHQJqAGoIagRqDGoCagp6FJQM1BzUDKoBSgFlApKA7UEtQK1BrUBtQW1A7UHdQBdBuoI
6gS6HNQZ5ASlg7qAuoK6gbqDeoB6gnqBMkBXgHqD+oD6gvqBrgRlgvqDBoCuAg0EXQ26BnQt
aBBoMGgI6DrQ9aAbQENBN4KGgVygLFA2KAfkBuWChoPyQB7QTaARoHxQAagQ5AUVgW4GFYNK
QD7QSNAo0GjQGNBY0DjQLaDxoAmgW0ETQX7QbaDbQZNAk0FTQFNBd4Cmge4E3QW6G3QP6F7Q
dNAMUCnoPtD9oAdAM0EPgmaBHgLNBs0BzQXNA80HPQx6BPQoaAHoMdBC0OOgRaAnQE+CFoOW
gJ4CPQ1aCloGWg5aAXoGtBL0LOg50POgF0Avgl4CvQxaBXoF9CpoNeg10BrQ66C1oDLQG6B1
oDdBb4HeBr0DWg/aAHoX9B7ofdBG0AegD0EfgTaBPgZtBm0BbQV9AtoG+hS0HbQD9BloJ2gX
6HPQF6AvQbtBX4G+Bn0D2gP6FrQXtA+0H3QAdBD0HegQ6HvQD6AfQYdBP4F+Bv0COgL6FfQb
6Cjod9D/QH+A/gT9BToGOg46AWIPtRmu/0AiyAQygywgK8gGigLZQQ5QFVA0KAYUC4oDxYMS
QImgqqBqoOqgC0A1QDVBSaBaoAtBtUF1QHVB9UAS6CJQfdDFoEtADUANQY1AjUFNQE1Bl4Ka
gZqDkkEtQCmgVFAaqCWoFag1qA2oLagdqD2oA+gyUEdQJ9DloM4gJygd1AXUFdQN1B3UA9QT
1AuUAboC1BvUB9QX1A90JSgT1B80AHQVaCDoatA1oGtBg0CDQUNA14GuB90AGgq6ETQM5AJl
gbJBOSA3KBc0HJQH8oBuAo0A5YMKQIUgL6gIdDOoGFQC8oFGgkaBRoPGgMaCxoFuAY0HTQDd
CpoI8oNuA90OmgSaDJoCmgq6AzQNdCfoLtDdoHtA94Kmg2aASkH3ge4HPQCaCXoQNAv0EGg2
aA5oLmgeaD7oYdAjoEdBC0CPgRaCHgctAj0BehK0GLQE9BToadBS0DLQctAK0DOglaBnQc+B
nge9AHoR9BLoZdAq0CugV0GrQa+B1oBeB60FlYHeAK0DvQl6C/Q26B3QetAG0Lug90DvgzaC
PgB9CPoItAn0MWgzaAtoK+gT0DbQp6DtoB2gz0A7QbtAn4O+AH0J2g36CvQ16BvQHtC3oL2g
faD9oAOgg6DvQIdA34N+AP0IOgz6CfQz6BfQEdCvoN9AR0G/g/4H+gP0J+gv0DHQcdAJVdi4
VobalW9cy2JoXOsKtZ/ylr3Z8AaL9uNkbsN3s+Etl+D3B+3y63Zd1XfUQrRFaHyDnJDgtgi1
SXdRX+c59XcXtUgvydMxvicep6YdpzZ0IKq5qqLmspHhHcNkdZpsoXVQ8yanoTZMYPmbRRYV
dpGxXF0jt39xssvLoebhdC6vakFpOdQu3LuLJt6+4xl8pZEQ3r7jf6t9R2PYID+ILoTtp73S
aA1qY0F5pdGqjmE8ShBy5tp3tJGK2ncMzq9JbSXFQcq372itXEMvvH1H3r4jb9/ROIy378hb
/OPtO/K1zdt35O07nnvtO1oJb9/xfGvf0RZ02aIV++2kfPuOlSz28/YdefuOvH1H4zDeviNv
35G373hutu9oLPTw9h3PtfYdE0/2lw+jCa8ACVUBEk03/KokhT2zZN1p2xLTMU5ZTiayXcih
nUBXQkMSbVZ2kxy6aZnUXeURuVW2BKL/oNoUtU5Pi+HUJuif4FQfqA0MY2EJ0eIr/c2Gm+A5
JI3+00OZltiJUCmxKVRTntNVe1xAamk3uol2I14bxr4vIL2I/jt7xljH1a3EeDveOGao4ffJ
25d2GBHlTT7akLYgb+wdK1wjhzurX5ya44nLpowpqCmIagrPzHRPy35siBJzd5ETUxobcG01
BVG9DjATS8g8DMYUyrIC1vJgUq8WbHQJPyFfKVmI/lN4FWxhYQOLo6dUO+TBN3RKoeKcXJ5C
xVnuD257MvTPs4YLS4hEyv+8VnCoXLqOiNJlsZc7cR6ESk9LiGhalU+3SkTpVgkxD2KlpyVG
NK3KpxsdUbrRQfMgnAfbknAebEvCebAtiefBtiSeB9uSeM5uSw38U0OWPJ7df2nHtwb178xK
2C6bVgLQQm+5xVocR/8UDdP9uy3MOPXR8hw2lx8VU7Yp9lQvK2EpXmlaaRJkTyH1wyXauX4g
dWX6d6if0+RPJ1ku3yllZYTkcIUSWpJMZ/f5GqiLSaiwsMQWU5RtSGDjUGKmyM1JK+ESZ/kV
K1b4JEjlFtPfLAZy2hZDCiwGkS+GqUT/8SS9sD1znvmR52q9L+8I4XeaDGf5Q1VlFkBFi4H8
/WL4m52CGBdD+MnjTmEOewWx0hzZ1qBf4fxDi4FEsBgi2RosfDFMLV+xQK8fn/FN+s0y8AXY
KUIvhowKjw3nwE6Bi8F2WreGUztEnsWtIeq/vhhq+rVCmT0wiWp6kVl+GlSZndL0i+WbVI5y
hWVt+EX6ucTwmxeSv64cr5Wlru1ozOKEQZYuti0xkxKUG3jpcaxp7slq9nfKPy0QZShGarez
grvDZ+rWI9x8UeYwXr4lqfWvRsbA06+Vu0QRwmwmklNZZnbSwVbHMcQ+LG6oLd3Rxt4xroet
iaOffWCcQDfEyJdZyllZZo39pYY5FuUzh/ZEb7UQlwqbum0/fKTh9YEbhtF0czaHnaKdbl0i
2S6wW8CCXCQXDXs2e0HFVG6cJoE058uNQycZ14+ozwkh2usxlnDzrN3l1VepOeherXGxhErK
pHZaPLu6c9kNu2a4+EGL/YSWK8P3Cjp2r9qZrn+WpiufrJNLU07t0xQoVIqB+9iNnSmBRZka
+HYyuwQJc/Wo7xIHHaMcjphhcbFV5jr2RneM+81xu+N49Lm4SwjqP9wlcv4sP752D33alCFb
XvN46S7hMOwSCxYsgk9l63EQ0z++SzjCzTPLTvldwlTBLuE4A7sEzZGcK/XzhHH7MAw/x3aJ
KNLPWjOOnVmLrR3jlDMr+2Rn1nNnl1DKFna4MWYPbD3O9KbqfCilE9Fw80bdvpz/1Fk4Si65
zLMOi2Mll9F02bKSC/sUiXQSy1eqxNLpR69SXqZF9HmGz2FxSv9hcf/c8jWdheUrkjvo0iyL
HmtbSpfy/OirbW/anrdOju5kYw3DqMtXqvzyTTNVahGf5u1X38+VJRjqlrCh9BgYrxppIc9h
1gnlmDGIDrtZafhGjXGpPzFwxV1NeYBKDs3k6YR6pqC5vAAENUeC/CyEnaxso1WuOuSnRJLV
27GsmtxKRtC/l57UOtbTDbeOh9pXJRxwLEq83b4r4W2HP3Gu/UjCckdeor6OzSSSdWwm5946
9gjKOmY/xxNqHSvFASusY3a7YtBAjy/fHbxWo+W1ujv5n1mrerrh1upGU5R9vGVXzGFTM/sg
y6qYKHM3u9OyIIb93Iu65w6L4MwjkGGseYZdMUozDVH0ADXeon+y/uw1/lXqZzPaf5BF/2T9
o+iMLFA/u9H+Tov+uSCm4rXKmoE5ubX64XFlrX52PPSeqxTvkog4WV+rrGjVo2eP5mktpa7y
LuspdOXHXFc0vEVBnxuCV3S8vKL9l7N7Vyybp3dF6+mGW9GTYntGH2CFjNgR0W/TwsXa2EnR
y+NWxxh238YR7b6ND9DTWE86C+zzKE1nUqz+yfq/TfuPUD+30P6LY/VP1n857T9J/WT5WBur
f06KrnhF3+M42RW9kCgrmr2XGWpFm+QVbSOiYfdlt9kGp6r7b0PDdWT5/dcqZ+1M7sU1nX75
+bRpwm1yWaBpl3xX9gjJVThfToj1up1I1vJLsjLF06A4gXisAO73+8nWrVvJsGHDZLPP/fv3
w5XMuRDnfAx8/fDAAw+RhEN+7W7n93I7mNoJp5XhJiQPPPBQufA9iTfjzZMT5+HZmcfhcXic
ysfRz62i4dzKlxSPw+OczF5k4nsRj8PjnOJeZObXeTzwcJLXedpeZOF7EQ88nOJeZOV7EQ88
nOJeZON7EQ88nFQ45PQ7JwUeE9ObAno88KKMckd/kdzgHrsDEfwgs2Jnuh5D+1kMLSiPcZc5
B0QdpYkNGeXK30c/d1clZMxn38/q22+ds9p6W/+qMVO7J2RvrVLzaMN7581ypD573+Qpr9a3
WJdsjU1qOHWcNe6NdfPGCC2+TjoYXXDzH+mewVJeRq/F3r0n9n7w45r1C17PeyeW7L6KOJOc
3/mnew+29iybMTfxnblPbLI0PfbD5juz6hLPorWbbaXt/qwRtXPOlt6721XvuDhme9Xu4vpF
90ZP7vRp+w5rYp6sd92U3J4HDja8ZcVTS/3vR5ettey+fM7StBsGPjNw6Qe1tk2d0D8/Zlxu
o83zCnaWXWXv3HRNydJ5KbtKrk3e0Xx6fsrKV0YllyXufM+5Z2ijYx029038+Etvwi2pf04Z
8ZHlkOXTD9vMzHo6u0mnGrfc92HbFQ+u3lY1/4Gi7VMWfpPbInP8vvaNPhhe1530VexbMVlJ
pbl5fyQ+WtT08t/euvrzlOs9D8Xu+3ZUw473xse27iK1qbHt7YzJo3I6vVx6X8eh1/RbsXXB
m1v71t9zbd8ZNZLTPzreetzAVVfeWLfu4Emtry5YUlS7866m8x+e1jyx++A302q9/27KrGOf
jfn9q6bFAwtyNk8q7ba+/ZHeF72Td/PMBmsb939kxl9zV1XrOeuOi0ue+65s2aLJcxalvfbl
wmV9t63o2/CBo50/a/jXuwNesLe4ru+8jYUrZrcZfOyG154tuP/jnWPG/TXxlReO/N635bik
NfcM7dHCsqaszl8x2Z988tQQd2FOorNdoG0p9kBwZrH3Jne2T/IU5nql1BCtShmfyeL7KfGz
P8af1VCe4WLLRoD9LVl9qc1ERhClQc5C2j0gP24VSbjUWRB4tDrw8mXZdT3XLNsmFMRrx4lC
eWrdxxS5iz0FrDXcbi6fm3jlo0JqSosWaSlpKUSJLsjRYzF6RjcaWZ4rJZIoR2IPk/Xz+txZ
Xu+IclFMcpQofRvCwWZ5cAxMxl2McSxyHLuShM+b7c3H4VZ5uNxD7X8XuUSv3WRv3nb+YOPG
y0MtN/0Y2s5pkt+7OHGKQXD+HwAA//8DAN8favE=